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Observation: A lot of discussion
on digitalization, very little
discussion on data analytics.

- Access to services, youth-friendly services, services for social inclusion;
- Reaching out to young people and the digital divide;

- Resilience and empowerment for social inclusion;

- Discrimination in the digital space
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Data Analytics and Science trends

*Social Data Revolution
*Andreas Weigend,

—ex-Chief Scientist @ Amazon.com
—Today a professor @Stanford,UC Berkeley,Tsinghua

*Two data “revolutions”

—Classic: data is collected on need-basis

—15t wave: lots of data created everywhere, secondary
data, making sense of data

—2"d wave: people themselves (when motivated!) push
new information about their current

state/emotions/preferences/needs (statuses, twitter,
linkedin, facebook etc)
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The European Commission
has commissioned
Technopolis Group, Oxford
Internet Institute (Oll) and
the Centre for European
Policy Studies (CEPS) to
conduct an international
study on innovative data-
driven approaches to
inform policymaking.






Mailis Reps

@Mailis_Reps

Mailis Reps, Estonian politician, Estonian
Centre Party Deputy Chairman and
member of the board, and from 23
November 2016, Minister of Education
and Research.
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UN Global Pulse taxonomy

of novel big data sources

A. Data exhaust — passively collected data from people’s use
of digital services (mobile phones, credit card, other logs)

B. Online activity — Twitter, Search Engines, blogs, sentiments

C. Sensing Technologies — satellite or infrared of changing
landscapes, traffic patterns, light emissions, urban
development (remote and personal sensing)

D. Citizen Reported or Crowd-sourcing — humanitarian
emergencies, mobile phone-based surveys, user generated

MAJaps



https://www.youtube.com/watch?v=uL_4d5pelws
https://www.youtube.com/watch?v=oNZ_ZBCTRqc
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Source: http://www.unglobalpulse.org/



Satellite image

Metal roof

http://www.unglobalpulse.org/projects/measuring-poverty-machine-roof-counting
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(2 CAN YOUR PHONE
E TELL ABOUT YOU?

Yves-Alexandre de Monftjoye, Jordi Guoidbach,
Florent Robic, Alex “5andy” Pentland

g

H .
LT 2 :

Media Lab 3 ExS

H-*:.-w much can someone know about your personality just by looking
at the way you use your phone? We provide the first evidence that
personality can be reliably predicted from standard mobile phone logs.
Using a set of novel psychology-infornmed indicators that can be
computed from data available to all carriers, we were able to predict users
personalibies. As mobile cellular subscriptions have hit six bilhen
throughout  the world, our 1method  enables cost-effective,
guestionnaire-free investigation of personality-related gquestions at a
large-scale, opening exciting avenues for the use of personality to better
understand custormers

is the tenden-
cy to seek stimulation i the
company of others, to be
outgoing and energetic.

15

the

tendency 1o be warrm, compas-
sionate, and cooperative.

Personality: The Big 5

Neuroticism is the
tendency to experience
unpleasant emotions
easily.

15 the
tendency to be intellec-
tually curious, creative,
and open to feelings.

is the
tendency to show self-disci-
pline, be organized, and aim
for achievement
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Questions for brainstorming

*\What are the relevant new data sources?

* How can we use them?

* What should we do with the information? Who
cares? Which political decisions need faster
information from novel sources? Do we need
faster information? Does it come with
unanticipated risks?

virtual youth work, internet-based youth work, cyber-exclusion, cyber-bullying



